A GNSS PWV filling and short-term forecasting framework fused hybrid neural network
基于混合神经网络的GNSS PWV填补和短期预测框架
引文格式 | Citation:
Li H J, Zhao Q Z, Guo H W, et al. A GNSS PWV filling and short-term forecasting framework fused hybrid neural network[J]. Atmospheric Research, 2026, 329: 108508. DOI: 10.1016/j.atmosres.2025.108508.
Atmospheric Research(中科院2区,IF:4.4)
GNSS PWV
Lomb-Scargle Periodogram
GRNN
CNN
LSTM
Lomb-Scargle Periodogram
GRNN
CNN
LSTM
Abstract | 摘要
The long time series of precipitable water vapor (PWV) derived from the global navigation satellite system (GNSS) provides valuable information about atmospheric water vapor. However, existing long time series of PWV exhibits considerable data missing, and the short-term forecasting of PWV is insufficiently investigated, which becomes the focus of this paper. Accordingly, a hybrid driving framework is developed based on physical constraints and neural networks (PWV-FSFnet) utilizing GNSS PWV and meteorological (MET) data. This framework is used for long-time-series PWV filling and short-term PWV forecasting. In this framework, the long-time-series PWV filling model is first proposed by combining the linear and nonlinear variations of PWV and the relationship between PWV and MET parameters. Moreover, a short-term forecast model of PWV is developed by combining convolutional neural network and long short-term memory to predict the PWV of the next 1–6H, which considers the spatio-temporal relationship between PWV and multiple MET parameters. The experiment is performed in Mainland China using 957 GNSS stations, 1614 MET stations, and 87 radiosonde stations over the period of 2017–2024. Statistical results show that the PWV-FSFnet framework enables high-quality filling of long-time-series PWV with average RMS of 1.45 and 2.52 mm for internal and external accuracy, respectively. In addition, PWV-FSFnet demonstrates strong robustness in predicting PWV across different seasons, months, PWV levels, and climate regions, and the average RMS of hourly PWV forecasts is only 2.72 mm. The results demonstrate the feasibility and effectiveness of the proposed PWV-FSFnet framework in filling and forecasting PWV, highlighting its strong application potential in GNSS meteorology.
基于全球导航卫星系统(GNSS)反演获得的长时序大气可降水量(PWV)为研究大气水汽变化提供了宝贵数据。然而,现有GNSS PWV序列存在大量数据缺失,且针对PWV的短期预报研究尚不充分,这成为本文研究的重点。据此,本文联合GNSS PWV与气象(MET)数据,提出了一种基于物理约束与神经网络的混合驱动框架(PWV-FSFnet),用于实现长时序PWV数据填补与短期PWV预报。该框架首先通过结合PWV的线性/非线性变化特征及其与气象参数的关联,构建了长时序PWV填补模型;进而融合卷积神经网络与长短期记忆网络,开发了考虑PWV与多源气象参数时空关联的1–6小时短期PWV预报模型。基于2017–2024年中国大陆957个GNSS测站、1614个气象站及87个无线电探空站数据开展实验,统计结果表明:PWV-FSFnet框架能够高质量实现长时序PWV填补,其站内与站外精度验证的平均均方根误差分别为1.45毫米和2.52毫米;此外,该框架在不同季节、月份、PWV量级及气候区域均展现出强鲁棒性的预报能力,逐小时PWV预报的平均均方根误差仅为2.72毫米。研究成果验证了PWV-FSFnet框架在PWV填补与预报方面的可行性与有效性,展现了其在GNSS气象学领域的广泛应用潜力。