论文推荐|同济大学李晓明博士:基于GNSS实时卫星钟差及时服务的大气水汽快速反演

Rapid sensing of atmospheric water vapor with timely service of the GNSS satellite clock error

基于GNSS实时卫星钟差及时服务的大气水汽快速反演

XiaoMing Li(李晓明)
HaoJun Li(李浩军)
Zhicheng Li(李志成)

College of Surveying and Geo-Informatics, Tongji University(同济大学 测绘与地理信息学院)
ICOE(Shanghai)Technologies Co., Ltd(芯与物(上海)技术有限公司)

引文格式 | Citation:
Li X M, Li H J, Li Z C. Rapid sensing of atmospheric water vapor with timely service of the GNSS satellite clock error[J]. Advances in Space Research, 2025, 75(6): 4600-4612. DOI: 10.1016/j.asr.2024.12.071.

Advances in Space Research(中科院3区,IF:2.8)
Parameterization estimation
Satellite clock error
Real time service
Precipitable water vapor
Abstract | 摘要
The real-time retrieval of atmospheric water vapor is vital for accurate weather nowcasting. However, current global navigation satellite systems (GNSS) rely on high-precision real-time service (RTS) for detecting atmospheric water vapor, which suffers from delays due to computational overhead and network latency. To tackle this, a rapid parameter estimation method for GNSS satellite clock error model coefficients is proposed. This method efficiently estimates the clock error model coefficients presented by quadratic polynomial functions, leveraging 1-second sampling epoch-differenced phase observations. The real-time GNSS satellite clock error values at any given time can be derived from the estimated quadratic polynomial coefficients, whose computation time is reduced, improving timeliness. The estimated coefficients are then used to generate timely RTS for satellite clock error, adequate for retrieving real-time zenith tropospheric delay (ZTD) and precipitable water vapor (PWV), updated every minute. Results show that the recovered 1 Hz RT satellite clock error achieves average STDs of 0.057, 0.048, and 0.056 ns for GPS, BDS-3, and Galileo respectively, meeting accuracy requirements for ZTD and PWV retrieval. In scenarios of short-term time delays, the proposed method outperforms IGS RTS, with average RMS of ZTD reaching 12.4, 13.7, and 14.2 mm for GPS, BDS-3, and Galileo, and RMS values of 2.4, 3.1, and 3.2 mm for PWV conversion. These accuracies meet high-frequency numerical weather prediction needs, enhancing rapid sensing capabilities.
大气水汽的实时反演对精准天气临近预报至关重要。然而,在基于实时GNSS PPP技术探测大气水汽时,实时服务(RTS)受钟差解算和网络延迟影响,存在时效性问题。为此,本文提出一种GNSS卫星钟差模型系数的快速估计方法,即通过1秒采样的历元间载波相位观测值,直接快速解算以二次多项式模型表征的卫星钟差模型系数。基于所解算的多项式系数可实时计算任意时刻的实时卫星钟差,有效提升了卫星钟差服务的时效性。利用这些系数生成的实时卫星钟差产品,可实现分钟级更新的天顶对流层延迟(ZTD)与可降水量(PWV)反演。实验结果表明:计算的1Hz的GPS、BDS-3和Galileo实时卫星钟差的平均标准差分别为0.057、0.048和0.056纳秒,可满足ZTD与PWV反演的精度要求。在短时网络延迟场景下,本方法优于CNES RTS产品,其中,GPS、BDS-3和Galileo的ZTD反演精度可达12.4、13.7和14.2毫米,PWV反演误差可达2.4、3.1和3.2毫米,满足高频数值天气预报需求,为大气水汽的快速感知提供了一种解决方案。

作者简介
李晓明(1993-),男,讲师,主要从事GNSS精密单点定位与组合导航研究