论文推荐|武汉大学夏朋飞副教授团队:基于11年ERA5再分析数据与Informer模型的GNSS天顶对流层延迟深度学习预测方法

Deep learning for GNSS zenith tropospheric delay forecasting based on the informer model using 11-year ERA5 reanalysis data

基于11年ERA5再分析数据与Informer模型的GNSS天顶对流层延迟深度学习预测方法

Fangxin Hu(胡方鑫)
Zhimin Sha(沙智敏)
Pengzhi Wei(魏朋志)
Pengfei Xia(夏朋飞)
Shirong Ye(叶世榕)
Yixin Zhu(朱轶欣)
Jia Luo(罗佳)
GNSS research center, Wuhan University(武汉大学 卫星导航定位技术研究中心)
引文格式 | Citation:
Hu F X, Sha Z M, Wei P Z, et al. Deep learning for GNSS zenith tropospheric delay forecasting based on the informer model using 11-year ERA5 reanalysis data[J]. GPS Solutions, 2024, 28(4): 182. DOI: 10.1007/s10291-024-01720-9.
GPS Solutions(中科院1区Top,IF:3.9)
Zenith tropospheric delay
Deep-learning
Informer
ERA5
Precise point positioning
Abstract | 摘要
Zenith Tropospheric Delay (ZTD) is one of the main atmospheric errors in the Global Navigation Satellite System (GNSS). In this study, we propose a novel ZTD forecasting model based on the deep-learning method named Informer-based ZTD (IBZTD) forecasting model using the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth generation reanalysis data (ERA5) from 2011 to 2021. With 72-hour historical GNSS-derived ZTDs as prior information, the subsequent 24-hour ZTDs can be forecasted. The IBZTD forecasting model achieves the best regression fit with post GNSS-derived ZTDs compared with GPT3 (Global Pressure and Temperature 3) and HGPT2 (Hourly Global Pressure and Temperature 2) models, especially in winter with a Root Mean Square Error (RMSE) of 1.51 cm and a Mean Absolute Error (MAE) of 1.15 cm. With the post GNSS-derived ZTDs as reference, in terms of the overall 24-hour forecasting accuracy for 9 GNSS stations in 2022, IBZTD forecasting model achieves a MAE of 1.66 cm and a RMSE of 2.21 cm, significantly outperforming the GPT3 model (MAE: 2.60 cm, RMSE: 3.37 cm), HGPT2 model (MAE: 3.23 cm, RMSE: 4.03 cm) and Long Short-Term Memory (LSTM) model (MAE: 2.65 cm, RMSE: 3.65 cm). An average time improvement of 17.8% and comparable forecasting precisions are achieved in the IBZTD forecasting model compared with the Transformer-based ZTD (TBZTD) forecasting model. Using predicted ZTD as prior constraints in Precise Point Positioning (PPP), the vertical convergence speed exhibits a significant improvement of 14.20%, 20.24%, 18.48%, and 19.39% in four seasons.
天顶对流层延迟(ZTD)是全球导航卫星系统(GNSS)主要的大气误差源之一。本研究基于欧洲中期天气预报中心第五代再分析数据(ERA5)2011-2021年资料,提出了一种名为IBZTD的新型深度学习预报模型。该模型以72小时GNSS实测ZTD序列作为先验信息,可对未来24小时ZTD进行精准预报。相较于GPT3和HGPT2模型,IBZTD模型与事后GNSS ZTD数据具有最优的回归拟合度,其中冬季表现尤为突出,均方根误差(RMSE)和平均绝对误差(MAE)分别达1.51厘米和1.15厘米。以2022年9个GNSS测站的事后ZTD为参考,IBZTD模型在24小时预报中的整体MAE为1.66厘米,RMSE为2.21厘米,显著优于GPT3模型(MAE: 2.60厘米,RMSE: 3.37厘米)、HGPT2模型(MAE: 3.23厘米,RMSE: 4.03厘米)及长短期记忆网络模型(MAE: 2.65厘米,RMSE: 3.65厘米)。与基于Transformer的ZTD预报模型相比,IBZTD在保持相当精度的同时,平均计算效率提升17.8%。将预报ZTD作为先验约束应用于精密单点定位(PPP)解算,垂直方向收敛速度在四季分别提升14.20%、20.24%、18.48%和19.39%,展现出显著的性能改善。
作者简介
胡方鑫(1998—),男,硕士研究生,主要从事GNSS气象学和GNSS高精度数据处理研究
通讯作者:夏朋飞(1987-),男,副教授,主要从事GNSS数据处理与GNSS气象学研究