论文推荐|山东大学江楠副教授:基于深度学习方法的AMSR2陆地水汽反演

Land Water Vapor Retrieval for AMSR2 Using a Deep Learning Method

基于深度学习方法的AMSR2陆地水汽反演

Nan Jiang(江楠)
Yan Xu(许艳)
Tianhe Xu(徐天河)
Song Li(李耸)
Zhaorui Gao(高兆瑞)
Institute of Space Sciences, Shandong University(山东大学 空间科学研究院)
引文格式 | Citation:
JIANG N, XU Y, XU T, et al. Land Water Vapor Retrieval for AMSR2 Using a Deep Learning Method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11. DOI: 10.1109/TGRS.2022.3162222.
IEEE Transactions on Geoscience and Remote Sensing(中科院1区Top,IF:8.6)
Advanced Microwave Scanning Radiometer 2
(AMSR2)

combined precipitable water vapor (PWV) retrieving
ground-based global navigation satellite system (GNSS)
PWV
satellite-borne brightness temperature (Tb) data
Abstract | 摘要
In precipitable water vapor (PWV) retrieval, results with high spatial coverage but low temporal resolution can be achieved through satellite-borne sensors, such as the Advanced Microwave Scanning Radiometer 2 (AMSR2). Conversely, the ground-based global navigation satellite system (GNSS) can provide PWV with high temporal resolution and high precision but low spatial coverage. To combine the advantages of these two technologies, we introduce a backpropagation neural network (BPNN) to realize PWV retrieval from AMSR2 with ground-based GNSS data. We first detect the optimal configuration for the BPNN. Then, based on the results of the retrieval accuracy from different types of orbits, we find that the descending (De) orbit has the highest retrieval accuracy, with a root-mean-square error (RMSE) of 3.25 mm. Afterward, the influence of brightness temperature (Tb) data at different frequencies on PWV retrieval is analyzed. The results of GNSS- PWV verification indicate that the 18 +23-GHz frequency combination has the highest PWV retrieval accuracy, and the mean RMSE of all 82 test stations distributed globally can reach 3.53 mm. We also analyze the influence of differently located stations on retrieval accuracy, and the results show that the accuracy of high-latitude and polar regions is remarkably higher than that of other areas but with a lower relative error. Finally, we use radiosonde data as another external verification method to assess PWV retrieval accuracy. The results reveal that RMSE can reach 3.87 mm. Through a BPNN approach, we have creatively realized PWV retrieval from AMSR2 using ground-based GNSS data on a global scale.
在大气可降水量(PWV)反演中,星载传感器(如高级微波扫描辐射计2号/AMSR2)可获得空间覆盖范围广但时间分辨率较低的结果;而地基全球导航卫星系统(GNSS)能提供高时间分辨率、高精度但空间覆盖有限的PWV数据。为融合两种技术优势,本文引入反向传播神经网络(BPNN),利用地基GNSS数据实现AMSR2的PWV反演。首先探明BPNN的最优配置,进而通过分析不同轨道类型的反演精度,发现降轨道(De)反演精度最高,其均方根误差(RMSE)为3.25毫米。随后解析不同频率亮温(Tb)数据对PWV反演的影响,GNSS-PWV验证结果表明:18+23吉赫兹频率组合的反演精度最优,全球82个测试站点的平均RMSE可达3.53毫米。通过分析不同区位测站对反演精度的影响,发现高纬度及极地区域精度显著高于其他区域,且相对误差更低。最后采用无线电探空数据作为外部验证手段,确认PWV反演RMSE可达3.87毫米。本研究通过BPNN方法,创新性地实现了全球尺度上基于地基GNSS数据的AMSR2 PWV反演。
作者简介
江楠(1988-),男,副教授,主要从事空-天-地多传感器协同的近地空间环境监测研究