A Novel Multilayer Perceptron-Based Nonmeteorological Parameters PWV Retrieval Model
一种基于多层感知器的非气象参数PWV反演新型模型
引文格式 | Citation:
ZHANG H, YAO Y, XU C, et al. A Novel Multilayer Perceptron-Based Nonmeteorological Parameters PWV Retrieval Model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1–9. DOI:10.1109/TGRS.2024.3423471.
IEEE Transactions on Geoscience and Remote Sensing(中科院1区Top,IF:8.3)
Multilayer perceptron (MLP)
numerical weather model (NWM)
precipitable water vapor (PWV)
zenith tropospheric delay (ZTD)
numerical weather model (NWM)
precipitable water vapor (PWV)
zenith tropospheric delay (ZTD)
Abstract | 摘要
Accurate and high-spatiotemporal-resolution predictions of precipitable water vapor (PWV) play a crucial role in numerous atmospheric processes, including global navigation satellite system (GNSS) meteorological evaluation, weather forecasting, water cycle analysis, climate trend detection, and related fields. The calculation of PWV typically relies on meteorological parameters and conversion coefficients, leading to low accuracy and dependence on the availability of meteorological data. This article has formulated a high-accuracy, spatiotemporal-resolution PWV retrieval model that leverages nonmeteorological parameters through the implementation of a multilayer perceptron (MLP) neural network. The new retrieval model utilizes spatiotemporal information and the zenith tropospheric delay (ZTD) datasets from each GNSS station as training input parameters, with the numerical weather model PWV serving as the training output parameters. The MLP neural network was trained using datasets from 229 stations of the Crustal Movement Observation Network of China (CMONOC) and numerical weather model PWV data collected from 2005 to 2015. The experimental results indicate that the root mean square (rms) fitting accuracy between MLP PWV and ERA PWV is 1.36 mm. The MLP PWV model demonstrates an accuracy of approximately 1.6 mm on both temporal and spatial scales, with a spatiotemporal rms accuracy indicator of 1.92 mm. The testing accuracy of the MLP PWV, approximately 2 mm when compared with the numerical meteorological parameters model PWV, underscores the reliability of this work. The MLP PWV retrieval model, relying on nonmeteorological parameters, has demonstrated exceptional accuracy. By incorporating high-spatiotemporal ZTD, station spatial data, and temporal information, this model achieves superior spatiotemporal PWV accuracy, showcasing the effectiveness of the methodology presented in this study.
高精度、高时空分辨率的大气可降水量(PWV)预测在全球导航卫星系统(GNSS)气象评估、天气预报、水循环分析、气候趋势探测等诸多大气过程中具有至关重要的作用。传统PWV计算通常依赖气象参数和转换系数,导致精度较低且受气象数据可获得性的限制。本文通过采用多层感知器(MLP)神经网络,构建了一种利用非气象参数的高精度时空分辨率PWV反演模型。该新型反演模型以各GNSS站点的时空信息与天顶对流层延迟(ZTD)数据集作为训练输入参数,以数值天气模型PWV作为训练输出参数。利用中国地壳运动观测网络(CMONOC)229个站点2005年至2015年的数据集及数值天气模型PWV数据对MLP神经网络进行训练。实验结果表明,MLP PWV与ERA PWV的拟合均方根精度为1.36毫米。MLP PWV模型在时间与空间尺度上均表现出约1.6毫米的精度,时空综合均方根精度指标为1.92毫米。MLP PWV与数值气象参数模型PWV相比的测试精度约为2毫米,进一步验证了本研究的可靠性。该基于非气象参数的MLP PWV反演模型展现出卓越的精度。通过融合高时空分辨率的ZTD、站点空间数据与时间信息,该模型实现了更优的PWV时空反演精度,体现了本研究方法的有效性。