论文推荐|武汉大学夏朋飞副教授团队:基于Informer模型与GNSS的近实时三维水汽估计技术优化方法

Optimized Approach for Near-Real-Time 3-D Water Vapor Estimation Technique Using the Informer Model in GNSS

基于Informer模型与GNSS的近实时三维水汽估计技术优化方法

Yixin Zhu(朱轶欣)
Pengfei Xia(夏朋飞)
Shirong Ye(叶世榕)
Zhimin Sha(沙智敏)
Junfei Jiang(江俊飞)
E Shenglong(鄂盛龙)
Wuhan University(武汉大学)
Electric Power Research Institute of Guangdong Power Grid Co(广东电网公司广州供电局有限公司电力试验研究院)

引文格式 | Citation:
ZHU Y, XIA P, YE S, et al. Optimized approach for near-real-time 3-D water vapor estimation technique using the Informer model in GNSS[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-14. DOI:10.1109/TGRS.2024.3495680.

IEEE Transactions on Geoscience and Remote Sensing(中科院1区Top,IF:8.6 )
Global Navigation Satellite System (GNSS) tomography
informer
initial water vapor density
tomography grid division
Abstract | 摘要
Three-dimensional water vapor data are now being used for numerical weather prediction, which is effective for monitoring extreme weather events and improving forecast quality. This study focuses on reconstructing the 3-D water vapor field using Global Navigation Satellite System (GNSS) water vapor tomography techniques, addressing two main aspects: 1) Achieving high-precision real-time 3-D water vapor predictions as initial values. In this study, a novel high-precision water vapor prediction model, the Informer-WV model, is introduced, and its predictions can be served as the initial values for tomography. We trained the Informer-WV model using 5 years of historical ERA5 reanalysis data in Hong Kong (HK) region to obtain the real-time values from sliding-window predictions. The model demonstrated a remarkable prediction accuracy, with an annual root mean square error (RMSE) better than 0.80 g/m3 compared to the actual ERA5 values. 2) The upper boundary height of the 3-D tomography grid is determined by the vertical precision of initial values, which is adjusted to 5.2 km in this study, and the reconstructed slant water vapor (SWVs) are calculated with the predictions. By benchmarking against radiosonde data, we analyzed the near-real-time tomography inversion results for the two weakest prediction periods of the model. The RMSE of the water vapor inversion values derived from the optimized method was reduced from 1.55 to 1.26 g/m3, and the most significant improvement is at about 2–5 km. This approach not only improved the accuracy by 19% relative to the initial predictions but also significantly outperformed the traditional tomography method.
三维水蒸气数据现已被用于数值天气预报,可有效监测极端天气事件并提升预报质量。本研究致力于利用全球导航卫星系统(GNSS)水汽层析技术重建三维水汽场,重点关注以下两个方面:1)实现高精度实时三维水汽预测值作为初始场。本研究引入了一种新型高精度水汽预测模型——Informer-WV模型,其预测结果可作为层析解的初始值。我们利用香港地区5年的历史ERA5再分析资料对Informer-WV模型进行训练,通过滑动窗口预测获取实时水汽值。该模型表现出优异的预测精度,与实际ERA5数据相比,年均均方根误差(RMSE)优于0.80 g/m³。2)将三维层析网格上边界高度根据初始值的垂直精度确定为5.2千米,并利用预测值计算重构的斜路径水汽含量(SWV)。以无线电探空数据为基准,我们分析了模型两个预测最弱时段近实时层析反演结果。经该方法优化后,水汽反演值的RMSE从1.55 g/m³降至1.26 g/m³,其中约2–5公里高度范围的改进最为显著。该方法不仅相比初始预测精度提高了19%,也显著优于传统层析方法。

作者简介
朱轶欣(2001-),女,主要从事GNSS数据处理与GNSS气象学研究
通讯作者:夏朋飞(1987-),男,副教授,主要从事GNSS数据处理与GNSS气象学研究