论文推荐|中山大学姜中山副教授:追踪加州陆地水储量变化对大气河流的动态响应

Tracking California’s striking water storage gains attributed to intensive atmospheric rivers

追踪加州陆地水储量变化对大气河流的动态响应

Zhongshan Jiang(姜中山)
Hui Zhang(张晖)
Miao Tang(汤苗)
Xinghai Yang(杨兴海)
Linguo Yuan(袁林果)
Yuan Yuan(袁园)
Wei Feng(冯伟)
Min Zhong(钟敏)
Sun Yat-sen University(中山大学)
Southwest Jiaotong University(西南交通大学)

引文格式 | Citation:
JIANG Z, ZHANG H, TANG M, et al. Tracking California’s striking water storage gains attributed to intensive atmospheric rivers[J]. Journal of Hydrology, 2025, 653: 132804. DOI:10.1016/j.jhydrol.2025.132804.

Journal of Hydrology(中科院1区Top,IF:6.3)
GNSS
Ground subsidence
Terrestrial water storage
Precipitation extremes
Atmospheric rivers
Abstract | 摘要
California is highly vulnerable to extreme precipitation events due to the dense landfall of atmospheric rivers (ARs) during the winter months, often resulting in catastrophic consequences such as widespread floods, mudslides, and landslides. This study focuses on the recovery of daily variations in AR-driven terrestrial water storage (TWS), which produces geodetically detectable ground subsidence. We invert GNSS vertical positions to obtain daily estimates of equivalent water height (EWH) through a variational Bayesian principal component analysis (vbPCA) based inversion scheme and track significant water gains during record-setting winter months in four water years (WYs) 2011, 2017, 2019, and 2023. These precipitation extremes have resulted in a substantial short-term increase in water storage, as evidenced by the multi-source EWH datasets (GNSS, GRACE, and NLDAS). Notably, WY 2023 experienced the highest snowfall due to the landfalls of high-density, high-category ARs, while WY 2017 recorded the highest precipitation totals, driven by the most frequent occurrence of hazardous ARs. Our findings further highlight that GNSS can accurately detect exceptionally wet hydrological events on short time scales, benefiting from an improved signal-to-noise ratio due to substantial increase in water storage. The results also indicate that while these extreme water years can help alleviate surface subsidence in the Central Valley caused by groundwater overexploitation, it is insufficient to alter California’s heavy reliance on groundwater for its intensive agricultural activities. Our findings demonstrate that GNSS is successful in tracking prodigious water increases from short-term precipitation extremes that are weaker than powerful hurricanes, illuminating the prospect of GNSS in supporting water management and flood preparedness.
加利福尼亚州极易受到极端降水事件的影响,这主要归因于冬季大气河流(ARs)的频繁登陆,常引发洪水、泥石流和山体滑坡等灾害性后果。本研究聚焦于由AR驱动的陆地水储量(TWS)日变化的恢复,这类变化会导致可通过大地测量方法检测的地表形变。本文基于变分贝叶斯主成分分析(vbPCA)反演算法,利用GNSS垂向位移数据估算每日等效水高(EWH),并在四个水文年(WY2011、2017、2019和2023)创纪录的冬季月份中追踪了显著的水量增长。多源EWH数据集(整合GNSS、GRACE和NLDAS)证实,这些极端降水事件导致了水储量的短期剧增。值得注意的是,WY2023因多次高密度、高强度AR的登陆而出现最大降雪量,而WY2017则因灾害性AR发生最频繁而录得最大总降水量。研究结果表明,GNSS观测能够在短时间尺度上稳定探测极端湿润水文事件,主要得益于极端水量加载所带来的信噪比提升。此外,尽管这些异常丰水年份在一定程度上缓解了由地下水过度开采引起的中央谷地地面沉降问题,但仍不足以改变加州对地下水密集型农业的高度依赖。综上所述,即使在不具备飓风级强度的情况下,GNSS仍能有效追踪极端降水所引发的显著水量增加,为水资源监测与洪水风险管理提供了广阔的应用前景。

作者简介
姜中山(1989-),男,副教授,主要从事GNSS数据处理与应用分析研究